Abstract

Alternative configurations of non-pumped wells filled with reactive media were evaluated for removing hypothetical contaminant plumes. All wells were screened across the saturated zone of a simulated unconfined aquifer. Three heterogeneous hydraulic conductivity distributions (cases) were considered. A mass transport model accounting for advection and hydrodynamic dispersion produced an initial contaminant plume for each case. Two reactive well configurations were evaluated for each case. In one configuration, evenly spaced wells occupied a linear transect perpendicular to regional groundwater flow, located downgradient of the contaminant plume. A second configuration involved the same number of wells, but along evenly spaced, nonlinear flow lines originating from the downgradient boundary of the contaminant plume. Mass transport modeling simulated contaminant plumes moving through the aquifer and wells. Results suggest that nonlinear configurations, which take into account local flow variations near the downgradient boundary of a contaminant plume, more efficiently reduce contaminant concentrations and better control offsite migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.