Abstract
Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models parameterized for other materials. In this work, we evaluate three reactive force field (ReaxFF) parameter sets and compare them with two commonly-used non-reactive force fields (COMPASS and GLYCAM) in terms of their ability to predict lattice parameters, elastic constants, coefficients of thermal expansion, and the anisotropy of cellulose Iβ. We find that none is able to accurately predict these properties. However, for future studies focused on a given property, this paper presents the information needed to identify the force field that will yield the most accurate results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.