Abstract

There is little knowledge on performance during vibration exposure combined with occupational hazards such as bent or twisted postures. In addition, little information is available on the effective use of armrests during performance-related tasks. This paper investigates the influence of sitting in different working postures on the reaction time and perceived workload of subjects exposed to whole-body vibration. Twenty-one subjects were exposed to 1–20 Hz random vibration in the vertical and fore-and-aft directions. A choice reaction time task was completed while seated in four posture conditions: upright or twisted, with and without armrests. Following the task, participants completed the NASA TLX workload assessment. Posture combined with whole-body vibration exposure had a significant influence on the ability to perform the task. The combined environmental stressors significantly degraded the performance; not only did their reaction times become compromised, the participants’ workload demand also increased. The most severe decrement in performance and workload was experienced while seated in a twisted posture with no armrest support. The inclusion of armrests significantly improved the participants’ ability to complete the task with a lower workload demand. Relevance to industry Twisted postures have been observed in a variety of machine operations and it is important to determine their influence on operator workload. Many off-road machines have suspension seats fitted with armrests; this paper demonstrates that armrest support provides additional benefits for off-road machine operators under combined environmental stressors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call