Abstract
AbstractThe periodic sinc function interpolation offers a compelling solution to address the issue of noise in the analysis of thermogravimetric analysis (TGA) data, thereby enhancing the outcomes of differential techniques such as the Friedman isoconversional method. In this study, we introduce a novel approach that leverages the periodic sinc function interpolation to directly obtain smooth reaction rates from TGA data, eliminating the reliance on numerical differentiation methods. The efficacy of this method has been confirmed through its application to noisy experimental data derived from the thermal decomposition of various polymers, showcasing its robustness. Readers are provided with the corresponding code for Gnu Octave, serving as a free alternative to MATLAB. Additionally, the activation energies calculated from the experimental data using both the Friedman method and periodic sinc function interpolation closely align with those determined by the integral Vyazovkin method, emphasizing the validity and reliability of this new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.