Abstract

We are developing methods for imaging multiple PET tracers in a single scan with staggered injections, where imaging measures for each tracer are separated and recovered using differences in tracer kinetics and radioactive decay. In this work, signal separation performance for rapid dual-tracer 62Cu-PTSM (blood flow) + 62Cu-ATSM (hypoxia) tumor imaging was evaluated in a large animal model. Four dogs with pre-existing tumors received a series of dynamic PET scans with 62Cu-PTSM and 62Cu-ATSM, permitting evaluation of a rapid dual-tracer protocol designed by previous simulation work. Several imaging measures were computed from the dual-tracer data and compared with those from separate, single-tracer imaging. Static imaging measures (e.g. SUV) for each tracer were accurately recovered from dual-tracer data. The wash-in (k1) and wash-out (k2) rate parameters for both tracers were likewise well recovered (r = 0.87–0.99), but k3 was not accurately recovered for PTSM (r = 0.19) and moderately well recovered for ATSM (r = 0.70). Some degree of bias was noted, however, which may potentially be overcome through further refinement of the signal separation algorithms. This work demonstrates that complementary information regarding tumor blood flow and hypoxia can be acquired by a single dual-tracer PET scan, and also that the signal separation procedure works effectively for real physiologic data with realistic levels of kinetic model mismatch. Rapid multi-tracer PET has the potential to improve tumor assessment for image-guide therapy and monitoring, and further investigation with these and other tracers is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call