Abstract

Lack of accuracy of rainfall-runoff simulation (RRS) remains critical for some applications. Among various sources of uncertainty, precipitation plays a particular role. Rainfall rates as the main input data of RRS are of the first factors controlling the accuracy. In addition to the depth, spatial and temporal distributions of rainfall impact the flood discharge. Most of the previous studies on RRS uncertainty have ignored rainfall spatial distribution, where in large catchments, it is necessary to be modeled explicitly. Karoon III is one most important basin of the Iran because of the Karoon III dam in the outlet. In the present work, effect of spatial correlation of rainfall on HEC-HMS (SMA) continuous RRS uncertainty is evaluated using 2variate copula (2copula). Monte Carlo simulation (MCS) approach was used to consider the rainfall spatial dependence. To reduce the computational expense, sampling efficiency and convergence for MCS, Latin hypercube sampling (LHS) was used. Copula functions consider wide range of marginal probability distribution functions (PDFs), eliminating limits of regular join PDFs. For this aim, two scenarios were investigated. In the first scenario, sub-basin rainfall was considered independent, and in the second scenario, 2copula was adopted to model spatial correlation of rainfall. Dimensionless rainfall depths were calculated for each sub-basin, and the PDFs were determined. The generated random dimensionless rainfalls were reweighted and multiplied by watershed’s mean rainfall value. Stochastic Climate Library was used to generate continuous daily rainfalls. Sampling from dimensionless rainfalls using LHS algorithm, 100 runs of calibrated model-simulated 100 flows for each day following MCS, and 80 % certainty bound was calculated. Results showed that considering dependence decreased 18 % of the maximum uncertainty bound width, so the methodology could be recommended for decreasing predicted runoff error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.