Abstract

Abstract The Quasi-Zenith Satellite System (QZSS) is the recent Japanese satellite positioning system to enhance the positioning accuracy in Japan’s urban areas. Additionally, they provide precise orbit and clock corrections and can be obtained through their experimental signals (LEX), streaming access, and published site. Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) is one of the precise products offered in QZSS services that can be obtained on a global scale. In this study, we evaluated the performance of MADOCA orbit and clock corrections, particularly for real-time positioning applications using LEX signals. Based on the simulation, we predict that 16 countries in the East Asia and Oceania regions will gain the maximum benefit of the LEX signals. However, we stress that one may have difficulties decoding the LEX signals at regions where only one QZSS satellite is observed. During our sailing expedition at Sumatran Sea, we could only decode up to 37 % LEX signals for the observation period. It profoundly increased up to 95 % at Sulawesi Strait where at least three QZSS satellites with an elevation angle of, at its minimum, 40° were observed. The orbit and clock accuracy is estimated to be 5.2 cm and 0.6 ns with respect to International GNSS Service (IGS) final products. Our simulation of using the Real-Time Precise Point Positioning (RTPPP) method revealed that the accuracy of the corresponding positioning applications was less than one decimeter. Further, we compared the MADOCA products for RTPPP applications with Apex5 positioning solutions in static field observations. The positioning accuracy for MADOCA-RTPPP during the field observations was estimated to be centimeter to decimeter level and is slightly worse than Apex5 positioning solutions. Nevertheless, we highlight vast positioning applications using MADOCA-RTPPP, e. g., survey and mapping, smart agriculture, and offshore engineering navigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.