Abstract

Quadrupole time-of-flight mass spectrometry (Q-TOFMS) has been evaluated with respect to its applicability in comprehensive two-dimensional gas chromatography (GC×GC). At a maximum acquisition frequency, while approximately 50 full accurate mass spectra on disk were acquired per s (50Hz) in scan mode, the sampling rate in target mode (MS/MS) was strongly dependent on the number of target ions selected. The number of selected precursor ions per time window proportionally decreased the acquisition rate for each ion; one precursor ion ≅31.35Hz; two ions ≅16.68Hz; and for 8 precursor ions, a sampling rate of just 4.18Hz was found. When Q-TOFMS was used in simultaneous mode, where in addition to the acquisition of target ion MS/MS signals, it also collects the full mass spectrum, sampling rates were even lower. It is demonstrated that Q-TOFMS generates sufficient data points over each peak in GC×GC operation in scan mode using TOFMS acquisition only, or is able to collect sufficient data points for relatively wide chromatographic peaks (≥600ms) in the target mode (MS/MS), however only if one or two precursor ions are selected per time window. Mass accuracy was found to perform within specification (<5ppm), even for the fastest acquisition operation (50Hz). Spectral deconvolution is demonstrated to work better in GC×GC than in 1D GC mode. Data visualisation in target GC×GC mode presents difficulties when there are overlapping target windows comprising different numbers of precursor ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.