Abstract

The aim of this paper is the comparison of the thermal destruction course of one of the commercially available binders applied in the ALPHASET technology in dependence of the temperature, heating rate and the character of the atmosphere (inert, oxidising or reducing). The thermogravimetric analysis/differential scanning calorimetry/Fourier-transform infrared spectroscopy (TG/DSC/FTIR) system allowed for real-time analysis of the composition and intensity of gases emitted during slow heating in the inert and oxidising atmospheres. In addition, the TG/DTG/DSC investigation of the binder was performed in the reducing atmosphere. The pyrolysis gas chromatography coupled with mass spectrometry system allowed for the analysis of gases evolved at very fast heating in the inert atmosphere (pyrolysis) as a function of temperature. It has been proven that the type and amount of the gases emitted is highly dependent on the temperature, heating rate and the atmosphere in which it is performed. The highest versatility of harmful volatiles is produced during heating in the inert atmosphere. This type of atmosphere is present in the closest proximity of the liquid metal. Thus, to reduce the risk of exposure of the foundry workers, the extraction of the casting should be done under the hood, and sufficient personal protective equipment should be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.