Abstract

The kinetics of chemical reactions characterizes the rates of chemical processes, i.e. distribution of all reactants, intermediates and products over time. This information is of vital importance for all areas of chemistry: chemical technology to control organic or inorganic syntheses, chemical construction of nanomaterials, as well as for the investigation of biochemical processes. The chemical kinetics data provide a possibility to investigate the effect of different chemical, physical and environmental factors on the rate of a reaction, final products and by-products distribution, and even the direction of a chemical process. In the first part of the chapter the general introduction to the kinetics of chemical reactions is given. The classical kinetics of chemical reactions uses the outcome from experimental measurement of reaction rates. However, currently available reliable computational ab initio methods provide an alternative efficient way for estimation of the rate constants even for stepwise and multidirectional reactions. Another benefit of the computational investigations is the possibility to simulate a wide range of processes with duration from picoseconds to hours, days, or even for much longer time scales. Contemporary ab initio methods have been used for estimation and prediction of reaction rates for a number of different chemical reactions. Until recently most of the theoretical studies on kinetic parameters have not been extended beyond the calculations of the rate constants of chemical reactions. In the present review we describe the simulation of the chemical kinetics of proton transfer (tautomerization) in nucleic acid bases and their complexes with metal ions, also in the presence of water molecules. The considered models are based on the ab initio calculated rate constants of chemical reactions. Then, such predicted rate constants are used for further kinetic simulations. Biological consequences of investigated processes are also discussed.KeywordsChemical reactivityGas-phase experimentsNucleobasesLaser desorptionTautomerizationPoint mutations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.