Abstract

BackgroundNitrogen nutrition is one of the major factors that limit growth and production of crop plants. It affects many processes, such as development, architecture, flowering, senescence and photosynthesis. Although the improvement in technologies for protein study and the widening of gene sequences have made possible the study of the plant proteomes, only limited information on proteome changes occurring in response to nitrogen amount are available up to now. In this work, two-dimensional gel electrophoresis (2-DE) has been used to investigate the protein changes induced by NO3- concentration in both roots and leaves of maize (Zea mays L.) plants. Moreover, in order to better evaluate the proteomic results, some biochemical and physiological parameters were measured.ResultsThrough 2-DE analysis, 20 and 18 spots that significantly changed their amount at least two folds in response to nitrate addition to the growth medium of starved maize plants were found in roots and leaves, respectively. Most of these spots were identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS). In roots, many of these changes were referred to enzymes involved in nitrate assimilation and in metabolic pathways implicated in the balance of the energy and redox status of the cell, among which the pentose phosphate pathway. In leaves, most of the characterized proteins were related to regulation of photosynthesis. Moreover, the up-accumulation of lipoxygenase 10 indicated that the leaf response to a high availability of nitrate may also involve a modification in lipid metabolism.Finally, this proteomic approach suggested that the nutritional status of the plant may affect two different post-translational modifications of phosphoenolpyruvate carboxylase (PEPCase) consisting in monoubiquitination and phosphorylation in roots and leaves, respectively.ConclusionThis work provides a first characterization of the proteome changes that occur in response to nitrate availability in leaves and roots of maize plants. According to previous studies, the work confirms the relationship between nitrogen and carbon metabolisms and it rises some intriguing questions, concerning the possible role of NO and lipoxygenase 10 in roots and leaves, respectively. Although further studies will be necessary, this proteomic analysis underlines the central role of post-translational events in modulating pivotal enzymes, such as PEPCase.

Highlights

  • Nitrogen nutrition is one of the major factors that limit growth and production of crop plants

  • This work provides a first characterization of the proteome changes that occur in response to nitrate availability in leaves and roots of maize plants

  • Further studies will be necessary, this proteomic analysis underlines the central role of post-translational events in modulating pivotal enzymes, such as phosphoenolpyruvate carboxylase (PEPCase)

Read more

Summary

Introduction

Nitrogen nutrition is one of the major factors that limit growth and production of crop plants. Nitrogen nutrition is one of the major factors that influence plant growth [1,2] The availability of this nutrient affects many processes of the plant, among which development, architecture, flowering, senescence, photosynthesis and photosynthates allocation [1,2,3,4,5,6,7]. The low bio-availability of nitrogen in the pedosphere with respect to the request of the crops has spawned a dramatic increase in fertilization that has detrimental consequences on environment such as water eutrophication and increase in NH3 and N2O in the atmosphere [6,8] This side-effect is severe in the case of cereals, which account for 70% of food production worldwide. Because of the economical relevance, the feasibility to combine extensive physiological, agronomic and genetic studies as well as the high metabolic efficiency of C4 plants, maize (Zea mays L.) was proposed as the model species to study N nutrition in cereals [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call