Abstract

Speech-modulated bone-conducted ultrasound (BCU) can transmit speech sounds for some profoundly deaf individuals. Hearing aids using BCU are considered to be a novel hearing system for such individuals. In our previous study, the speech discrimination for speech-modulated BCU was objectively confirmed using a magnetoencephalography. Moreover, in our previous behavioral study, prosodic information for speech-modulated BCU could also be discriminated in the normal hearing. However, the prosodic discrimination for speech-modulated BCU has not objectively been studied. In order to evaluate the prosodic discrimination for speech-modulated BCU, mismatch fields (MMFs) elicited by prosodic and segmental change were measured for speech-modulated BCU and air-conducted speech. Ten Japanese participants with normal hearing took part in this study. Stimuli re-synthesized from the speech of a native Japanese female adult were used. Standard stimulus was /itta/ with a flat pitch pattern, and two deviant stimuli were /itta?/ with a rising pitch pattern and /itte/ with a flat pitch pattern. All and nine participants elicited the prominent MMF elicited by the prosodic and segmental change for the speech-modulated BCU, respectively. The moment of MMF components for speech-modulated BCU was significantly smaller than those for air-conducted speech, while no difference in the MMF latency elicited by the prosodic and segmental change were observed between both stimulus conditions. Comparing the MMFs elicited by prosodic and segmental change, no significant differences were observed for both stimulus conditions. Thus, it is suggested that the prosodic change can be discriminate to the same degree as segmental change even for speech-modulated BCU. However, discrimination capability for speech-modulated BCU is slightly inferior to that for air-conducted speech.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.