Abstract

Direct supercritical carbon dioxide (sCO2) power cycles are an efficient and potentially cost-effective method of capturing CO2 from fossil-fueled power plants. These cycles combust natural gas or syngas with oxygen in a high pressure (200–300 bar), heavily diluted sCO2 environment. The cycle thermal efficiency is significantly impacted by the proximity of the operating conditions to the CO2 critical point (31 °C, 73.7 bar) as well as to the level of working fluid dilution by minor components, thus it is crucial to correctly model the appropriate thermophysical properties of these sCO2 mixtures. These properties are also important for determining how water is removed from the cycle and for accurate modeling of the heat exchange within the recuperator. This paper presents a quantitative evaluation of ten different property methods that can be used for modeling direct sCO2 cycles in Aspen Plus®. Reference fluid thermodynamic and transport properties (REFPROP) is used as the de facto standard for analyzing high-purity indirect sCO2 systems, however, the addition of impurities due to the open nature of the direct sCO2 cycle introduces uncertainty to the REFPROP predictions as well as species that REFPROP cannot model. Consequently, a series of comparative analyses were performed to identify the best physical property method for use in Aspen Plus® for direct-fired sCO2 cycles. These property methods are assessed against several mixture property measurements and offer a relative comparison to the accuracy obtained with REFPROP. The Lee–Kessler–Plocker equation of state (EOS) is recommended if REFPROP cannot be used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call