Abstract

In this study, methane (CH4) and nitrous oxide (N2O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10weeks. In general, CH4 and N2O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH4 or N2O peak emissions. CH4 emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N2O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH4 and N2O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.