Abstract

The preseparator of an Andersen impactor with different coating treatments for a range of particle-size distributions was evaluated. Limited theoretical simulations constrained by simplifying assumptions of the airflow fields in the preseparator and upper stages of an 8-stage Andersen impactor were used to reveal low-velocity and high-pressure regions for potential deposition. These regions were then sampled in subsequent particle deposition experiments. Disodium fluorescein aerosols were sampled with different coating treatments of the preseparator floor. Particles collected at impactor stages determined particle size distributions. Stage deposition was compared between different preseparator treatments (buffer and silicon oil). Collection efficiency in the preseparator followed the pattern buffer > silicon oil > untreated. Statistical differences (P < 0.05) were noted in collection efficiency of large particles (45 micro m-75 microm) in the preseparator. The mass median aerodynamic diameters and geometric standard deviations showed some statistical differences when different preseparator treatments for large particles were used; therefore, preseparator coating was shown to influence performance and thereby estimates of particle size by inertial impaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.