Abstract

The power consumption of the network equipment has increased significantly and some strategies to contain the power used in the IP network are needed. Among the green networking strategies, the virtualization class and in particular the deployment of migrating virtual routers can lead to a high energy saving. It consists in migrating virtual routers in fewer physical nodes when the traffic decreases allowing for a power consumption saving. In this paper we formulate the problem of minimizing the power consumption as a Mixed Integer Linear Programming (MILP) problem. Due to the hard complexity of the introduced MILP problem, we propose a heuristic for the migration of virtual routers among physical devices in order to turn off as many nodes as possible and save power according to the compliance with network node and link capacity constraints. We show that 50% of nodes may be turned off in the case of a real provider network when traffic percentage reduction of 80% occurs. Finally we also perform a feasibility study by means of an experimental test-bed to evaluate migration time of a routing plane based on QUAGGA routing software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call