Abstract

The present study comprehensively evaluates the postnatal growth, hematology, telomere length, and semen attributes of multiple clones and re-clone derived from superior buffalo breeding bulls. To the best of our knowledge, we successfully produced multiple clones and a re-clone of an earlier cloned buffalo bull from an embryo developed from an adult bull's skin-derived cell for the first time. The cloned bulls' growth, blood hematology, plasma biochemistry, and telomere length were all shown to be normal at various stages of development. The bulls were used for semen production after being screened for testicular growth and training. Semen characteristics such as volume, concentration, and initial motility of fresh sperm as well as motility and kinetics characteristics such as straightness (STR), average lateral head displacement (ALH), and beat cross frequency (BCF) of frozen-thawed sperms of the cloned bulls were found to be similar to those of non-cloned bulls, including the donor bulls. Additionally, it was found that cloned bulls' functional sperm attributes, including acrosome intactness, mitochondrial membrane potential, and superoxide anion status, were comparable to those of non-cloned bulls. These characteristics are necessary for sperm to pass through the female reproductive system, penetrate the oocyte, and efficiently fertilize. Finally, this study adds to our understanding of the postnatal development, hematology, telomere length, and sperm characteristics of superior buffalo breeding bulls that have been cloned and re-cloned. The findings provide the groundwork for improving cloning practices, refining reproductive procedures, and optimizing the use of cloned genetic material in animal breeding and conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.