Abstract
We have previously reported that Tamarix gallica caused a marked inhibition of thioacetamide-induced hepatotoxicity, oxidative damage and early tumor promotion related events in the liver. These results strongly indicates that T. gallica may have chemopreventive potential. Therefore, in the present study, we examined the inhibitory effects of T. gallica methanolic extract on diethylnitrosamine (DEN) initiated and 2-acetyl aminofluorene (2-AAF) promoted liver carcinogenesis in male Wistar rats. Interestingly, it was found that T. gallica (25 and 50 mg/kg body wt.) resulted in a marked reduction of the incidence of liver tumors. The study was further histologically confirmed. Furthermore to understand the underlying mechanisms of chemopreventive action by T. gallica we evaluated the levels activities of hepatic antioxidant defense enzymes, ornithine decarboxylase activity and hepatic DNA synthesis as a marker for tumor promotion since direct correlation between these marker parameters and carcinogenicity have been well documented. Treatment of male Wistar rats for five consecutive days with 2-AAF i.p. induced significant hepatic toxicity, oxidative stress and hyperproliferation. Pretreatment of T. gallica extract (25 and 50 mg/kg body wt.) prevented oxidative stress by restoring the levels of antioxidant enzymes and also prevented toxicity at both the doses. The promotion parameters induced (ornithine decarboxylase activity and DNA synthesis) by 2-AAF administration in diet with partial hepatectomy (PH) were also significantly suppressed dose-dependently by T. gallica. Therefore, we can conclude that ultimately the protection against liver carcinogenesis by T. gallica methanolic extract might be mediated by multiple actions, which include restoration of cellular antioxidant enzymes, detoxifying enzymes, ODC activity and DNA synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.