Abstract

Bacterial cellulose (BC) is used in biomedical applications due to its unique material properties such as mechanical strength with a high water-absorbing capacity and biocompatibility. Nevertheless, native BC lacks porosity control which is crucial for regenerative medicine. Hence, developing a simple technique to change the pore sizes of BC has become an important issue. This study combined current foaming BC (FBC) production with incorporation of different additives (avicel, carboxymethylcellulose, and chitosan) to form novel porous additive-altered FBC. Results demonstrated that the FBC samples provided greater reswelling rates (91.57 % ~ 93.67 %) compared to BC samples (44.52 % ~ 67.5 %). Moreover, the FBC samples also showed excellent cell adhesion and proliferation abilities for NIH-3T3 cells. Lastly, FBC allowed cells to penetrate to deep layers for cell adhesion due to its porous structure, providing a competitive scaffold for 3D cell culture in tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call