Abstract

ABSTRACT In the human body, maintaining the core body temperature (CBT) is vital to ensure proper cellular and body functions. The temperature of 37°C (98°F) is the well-established baseline for CBT, but significant deviations to under 35°C (95°F) or over 40°C (104°F) can result in several health complications. If unnoticed in spaceflight, astronauts CBT could reach dangerously high levels when doing physically challenging tasks such as spacewalking or exercise. Therefore, a real-time multi-physiological parameter sensing system is needed to noninvasively monitor the status of crew members in space. The purpose of this paper is to test a novel temperature sensor developed by integrating thin sheets of polyvinylidene fluoride (PVDF), a temperature dependent dielectric material, into the sensor system designed as a substrate. This substrate interacts with the electromagnetic field created by the spiral sensor to result in a quantitative temperature monitoring sensor with a resolution of 1°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.