Abstract

Understanding the mechanical properties is important in predicting the clinical behavior of composites. Finite element analysis (FEA) evaluates properties of materials replicating clinical scenario. This study evaluated polymerization shrinkage and stress, wear resistance (WR), and compressive strength (CS) of silorane in comparison with two methacrylate resins. This study design was a numerical study using FEA. Three-dimensional (3D) models of maxillary premolar with Class I cavities (2 mm depth, 4 mm length, and 2.5 mm width) created and restored with silorane, nanohybrid, and microhybrid; Groups I, II, and III, respectively. Loads of 200-600 N were applied. Polymerization shrinkage was first determined by displacement produced in the X, Y, and Z planes. Maximum stress distribution due to shrinkage was calculated using AN SYS software. 3D cube models of composite resins were simulated with varying filler particle size. Similar loads were applied. WR and compressive stress were calculated: K W L/H and load/cross-sectional area, respectively. Statistical analysis done using one-way ANOVA, Kruskal-Wallis, and Tukey's honestly significant difference test (P < 0.05). Polymerization shrinkage (0.99%) and shrinkage stress (233.21 Mpa) of silorane were less compared to microhybrid (2.14% and 472.43 Mpa) and nanohybrid (2.32% and 464.88 Mpa). Silorane (7.92×/1011 μm/mm3) and nanohybrid (7.79×/1011) showed superior WR than microhybrid (1.113×/1017). There was no significant difference in compressive stress among the groups. Silorane exhibited less polymerization shrinkage and shrinkage stress compared to methacrylates. Silorane and nanohybrid showed greater WR compared to microhybrid. CS of all groups was similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.