Abstract

A series of dual-sensitive poly(2-hydroxyethyl acrylate/itaconic acid) (P(HEA/IA)) hydrogels were synthesized and evaluated as drug delivery systems for potential antiproliferative agents. Investigated hydrophobic compounds, Mn(II) and Zn(II) complexes with Oxaprozin, were efficiently loaded into the P(HEA/IA) hydrogels, which was confirmed by FTIR and UV–Vis spectroscopy. Swelling studies, conducted in the physiological pH range of 2.20–8.00 and in temperature range of 30–50 °C, demonstrated that loaded transition metal complexes in P(HEA/IA) hydrogels did not annul pH and temperature sensitivity of the hydrogels. In vitro antiproliferative activity of Mn(II) and Zn(II) complexes with Oxaprozin against human cervical (HeLa) and melanoma cancer (Fem X) cell lines was tested. Results of in vitro release study investigated at different pH conditions confirmed P(HEA/IA) hydrogels as a highly effective pH-triggered drug delivery system for hydrophobic antiproliferative agents. These performances indicate that P(HEA/IA) hydrogels loaded with transition metal complexes can be further studied as a promising candidate for anticancer therapy, as well as for targeted treatment of intestine/colon cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.