Abstract

Poly(butylene 2,5-furan dicarboxylate) (PBF) is an alipharomatic polyester that can be prepared using monomers derived from renewable resources such as 2,5-furan dicarboxylic acid and 1,4-butanediol. In the present work the thermal behavior of PBF was studied. Multiple melting was observed during heating traces of samples isothermally crystallized from the melt using differential scanning calorimetry (DSC). The wide angle X-ray diffraction (WAXD) patterns did not reveal the presence of a second crystal population, or a crystal transition upon heating. DSC study showed that the phenomena are closely related to recrystallization. Temperature modulated DSC (TMDSC) tests indeed evidenced enhanced recrystallization. The equilibrium melting point was estimated to be 184.5 °C using the linear Hoffman–Weeks extrapolation. The heat of fusion of the pure crystalline polymer was found equal to 129 J/g or (27.35 kJ/mol), a little lower than that of PBT. The Lauritzen–Hoffman secondary nucleation theory was used and the surface energy values and the work of chain folding were found to be comparable to those of PBT, but quite lower than those of poly(ethylene terephthalate) (PET). The non-isothermal crystallization on cooling and the cold-crystallization of quenched samples were also studied. Condensed spherulites were observed on isothermal crystallization under large supercoolings by using polarized optical microscopy (POM), while the spherulites turned to ring-banded morphology at higher temperatures. In every case the nucleation density was high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call