Abstract

Capillary electrophoresis and electrokinetic chromatography are typically carried out in unmodified fused-silica capillaries under conditions that result in a strong negative zeta potential at the capillary wall and a robust cathodic electroosmotic flow. Modification of the capillary wall to reverse the zeta potential and mask silanol sites can improve separation performance by reducing or eliminating analyte adsorption, and is essential when conducting electrokinetic chromatography separations with cationic latex nanoparticle pseudo-stationary phases. Semipermanent modification of the capillary walls by coating with cationic polymers has proven to be facile and effective. In this study, poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymers were synthesized by reversible addition-fragmentation chain transfer polymerization and used as physically adsorbed semipermanent coatings for capillary electrophoresis and electrokinetic chromatography separations. An initial synthesis of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymer coating produced strong and stable anodic electroosmotic flow of -5.7 to -5.4 × 10-4 cm2 /V⋅s over the pH range of 4-7. Significant differences in the magnitude of the electroosmotic flow and effectiveness were observed between synthetic batches, however. For electrokinetic chromatography separations, the best performing batches of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymer performed as well as the commercially available cationic polymer polyethyleneimine, whereas polydiallylammonium chloride and hexadimethrine bromide did not perform well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call