Abstract

The aim of the present study was to develop a passive absorptive equilibrium sampler that would enable the determination of the concentrations of polar organic compound (POC) in water more efficiently than existing techniques. To this end, a novel plastic material, poly(ethylene-co-vinyl acetate-co-carbon monoxide) (PEVAC), was evaluated and the results were compared with an existing silicone-based passive absorptive equilibrium device. Seven compounds (imidacloprid, carbendazim, metoprolol, atrazin, carbamazepine, diazinon, and chlorpyrifos), a mixture of pharmaceuticals, and pesticides with a logarithmic octanol-water partition coefficient ranging from 0.2 to 4.77 were selected as model substances for the experiments. The results showed that six of the seven selected POCs reached distribution equilibrium within 4 d in the two materials tested. A linear relation with a regression coefficient of more than 0.8906 between the established logarithmic absorbent-water partition coefficient and the calculated logarithmic dissociation partition coefficient of the selected compounds in the two polymers was observed. The correlation between these two coefficients was within one order of magnitude for the compounds that reached equilibrium in the two polymers, which demonstrates that both materials are suitable for mimicking biological uptake of POCs. The PEVAC material showed an enhanced sorption for all selected compounds compared to the silicone material and up to five times higher enrichment for the most polar compound. Fluorescence analysis of the sampler cross-section, following the uptake of fluoranthene, and proof that the sorption was independent of surface area variations demonstrated that the PEVAC polymer possessed absorptive rather than adsorptive enrichment of organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call