Abstract
Woodchip denitrification walls offer a potentially useful way for passive in situ remediation of groundwater nitrate pollution, yet because of the low redox state they induce on the subsurface environment there is an inherent risk they can promote pollution-swapping phenomena. We evaluated pollution-swapping phenomena associated with the first two operational years of a woodchip denitrification wall that is being trialled in a fast-flowing shallow gravel aquifer of quartzo-feldspathic mineralogy. Following burial of woodchip below the water table there was immediate export of dissolved organic carbon (DOC), phosphorus and ammonium into the groundwater. Under the low redox state sustained by labile DOC, the wall initially provided 100% nitrate removal at the expense of acute and localised pollution that occurred in the form of a plume of dissolved iron, manganese and arsenic that were mobilised from the aquifer sediments, in conjunction with methane gas emission. Within one year however, the reactivity of the woodchip wall subsided to support a steady state condition in which nitrate reduction was the terminal electron acceptor process with no measurable methane emission. Having initially functioned as a sink for the potent greenhouse gas nitrous oxide (N2O), evidence is that the woodchip wall is now exporting N2O, albeit at rates less than those associated with productive agricultural land.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.