Abstract
Extraction of Pu(IV) with tri-n-butylphosphate is performed using a glass chip microchannel to evaluate the extraction rate. Two-phase flow forms in the microchannel by introducing a solution of Pu(IV) and tri-n-butylphosphate with flow rates above 5 μL/min. The Pu(IV) extraction reaction proceeds at the interface between the two phases. To evaluate the extraction rate, the contact time between the two phases is varied from 0.48 to 4.8 s by changing the confluent length of the microchannel and the flow rate. The Pu concentration of each phase collected from the microchannel is measured with an alpha liquid scintillation counter, and the contact time dependence of Pu(IV) extraction is obtained. An extraction model based on diffusion in the microchannel and the reaction at the interface is proposed and applied to determine the extraction rate. The extraction process is assumed to follow pseudo-first-order kinetics, and the extraction rate constant of Pu(IV) is determined to be 1.5 × 10(-2) cm/s. The investigation demonstrates that a microfluidic device can be a new tool to determine Pu(IV) extraction rates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.