Abstract

Evaluation of plasmas produced and optimized for improving the capability of convenential laser induced breakdown spectroscopy (LIBS) for analytical purposes of solid samples is the main goal of the present work. The plasma produced in the present study was generated by focusing a single nano-second Nd:YAG laser at the fundamental wavelength of 1064 nm and at the second harmonic wavelength of 532 nm on an Al target in air at atmospheric pressure. The emission spectrum was recorded time resolved over the whole UV-NIR (200–1000 nm) spectral range. This work describes an extension of previously reported studies and focuses now on the determination of the plasma parameters at the optimum condition – highest signal-to-noise ratio (SNR) and minimum limit of detection (LOD) — of the LIBS technique, which is now widely applied to the elemental analysis of materials in atmospheric air. Parameters of the produced plasma in the time interval from 0 to 10 μs are determined for to further understanding the LIBS plasma dynamics. O I and Mn I spectral lines are used in the present work as thermometric lines for the determination of the plasma temperature based on Boltzmann plots. Stark broadening of lines yields the electron density. The widths of the H α -line at 656.27 nm, of the O I line at 844.65 nm, of Al II lines at 281.65 nm and 466.30 nm and of the Si I line at 288.15 nm has been utilized for that. The plasma temperature ranged from 0.73 eV to around 1 eV for the different laser energies with both laser wavelengths for the optimized plasma used for LIBS analysis. This temperature is very close to that well known for the other spectrochemical analytical techniques or in excitation sources such as inductively coupled plasma-optical emission spectrometry (ICP-OES).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call