Abstract

Plasma-induced damage (PID) and bias temperature instability (BTI) are inevitable reliability issues that degrade the performance of transistors. In this study, PID and BTI, depending on the type of antenna layer, are evaluated in current-starved ring oscillators (ROs) to separate degradations in PMOS and NMOS transistors in a 65 nm silicon-on-insulator (SOI) process. Oscillation frequencies of ROs fluctuate with the performance of MOSFET switches between power/ground rails and virtual power/ground nodes. The initial frequencies of ROs with PMOS switches having antennas on upper layers decrease. However, those with NMOS switches become higher than those without PID because high-k dielectrics are damaged by positive charges. The degradation induced by negative BTI (NBTI) in PMOS is 1.5 times larger than that induced by positive BTI (PBTI) in NMOS. However, both NBTI- and PBTI-induced degradations are the same among different antenna layers. The frequency fluctuation caused by PID is converted to threshold voltage shifts by circuit simulations. Threshold voltages shift by 8.4 and 11% owing to PID in PMOS and NMOS transistors, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.