Abstract

A theoretical model on piezoceramic polymer composites with laminar periodic structure is presented. A salient feature of this model is that it can treat explicitly how the unit cell dimensions and other material properties influence the performance of an ultrasonic transducer made of 2-2 piezocomposites. The model predicts that there exist a series of modes associated with the periodic structure of a composite, which is beyond the stop-band edge resonance prediction. One of the main concerns in designing a composite transducer is how the surface vibration profile changes with frequency and how this is influenced by the aspect ratio of the ceramic plate. It was predicted that as long as the thickness resonance is below the first lateral mode frequency, there is always a frequency f/sub 1/ which is near the thickness resonance and at which the polymer and ceramic vibrate in unison. The effect of aspect ratio is to change the position of f/sub 1/ with respect to the thickness resonance frequency and the bandwidth in which polymer and ceramic have nearly the same vibration amplitude and phase. It is also predicted that, when operated in a fluid medium such as water, there will be a resonance mode which has a frequency determined by the velocity of the fluid medium and the unit cell length d and is associated with the oscillation of the fluid. The behavior of a composite plate as an acoustic transmitter and receiver and the influence of the aspect ratio of the ceramic plate on them are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.