Abstract
The growing production and wider application of metal nanoparticles gives rise to many concerns about their release to natural ecosystems. It is very important to be aware of the harmful impact of nanoparticles on living organisms, including plants. Therefore, it is of vital significance to explore the impact of metal nanoparticles on plants. This work assessed the phytotoxicity of bimetallic Ag/Au nanoparticles and Geum urbanum L. extract. The obtained bimetallic Ag/Au nanoparticles were characterized by UV–vis spectrophotometry (UV–vis), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The microscopic studies enabled the determination of the size of the obtained nanoparticles, which was 50 nm. The wide range of concentrations evaluated in the course of the study made it possible to observe changes in selected plants (seeds of Lepidium sativum, Linum flavum, Zea mays, Solanum lycopersicum var. Cerasiforme and Salvia hispanica-Chia) caused by a stress factor. The studies showed that the solution of Ag/Au nanoparticles was most toxic to flax (IC50 = 9.83 × 10–6/9.25 × 10–6 mg/ml), and least toxic to lupine (IC50 = 1.23 × 10–3/1.16 × 10–3 mg/ml). Moreover, we studied the toxicity of Geum urbanum extract. The extracts diluted to 0.00875 mg/ml stimulated the growth of lupine, flax and garden cress; extracts diluted to 0.175 mg/ml stimulated the growth of Chia and tomatoes; and extracts diluted to 0.00875 mg/ml stimulated the growth of corn. G. urbanum extract was most toxic to lupine (IC50 = 0.374 mg/ml), and least toxic to corn (IC50 = 4.635 mg/ml).
Highlights
IntroductionNanotechnology has reinforced its position as a progressive and interdisciplinary field of science
Over several decades, nanotechnology has reinforced its position as a progressive and interdisciplinary field of science
G. urbanum L extracts diluted to 0.00875 mg/ml stimulated the growth of lupine, flax and garden cress; extracts diluted to 0.175 mg/ml stimulated the growth of Chia and tomatoes; and extracts diluted to 0.00875 mg/ ml stimulated the growth of corn
Summary
Nanotechnology has reinforced its position as a progressive and interdisciplinary field of science. Nanomaterials have various physico-chemical characteristics and can be applied in different innovative fields [1]. They have contributed to the commercial revolution, which has led to the production of hundreds of new products. The most interesting solutions are brought by combining metal nanoparticles [2, 3]. Even though conventional chemical methods make it possible to control, to a certain extent, the shape of synthesized nanoparticles, they have two major disadvantages: the cost and the application of toxic chemicals [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inorganic and Organometallic Polymers and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.