Abstract

Dairy cows undergo immense stress and experience autoimmune reactions during the transition period, majorly due to the generation of ROS in the body. So, pharmacological approaches are needed to manage oxidative stress in the transition cows. Recently, the use of phytochemicals as feed additives in cows’ nutrition has gained interest in managing various disease conditions. In the current study, we have evaluated the potential effects of phytochemicals derived from methanolic extract of Thymus serpyllum against oxidative stress and autoimmunity via inhibition of bovine nuclear factor kappa B (NF-κB). The free radical scavenging activity of Thymus serpyllum seed and leaf extracts was 71.8 and 75.6%, respectively at 100 µg/mL concentration. Similarly, both extracts displayed radicals reducing power and inhibition of lipid-peroxidation maximally at 100 µg/mL. A total of 52 bioactive compounds were identified when the plant extract was characterized by the GC-MS analysis, and five (Thymol, Luteolin 7-o-glucuronide, Rosmarinic acid, Apigenin 6,8-di-c-glucoside, Kaempferol) had binding free energy values of −11.6433, −10.002, −8.2615, −7.1714, −6.4870, respectively, in complexes with bovine NF-κB. Through computational analysis, the screened compounds showed good pharmacokinetic parameters, including non-toxicity, non-carcinogenic, high gastrointestinal absorption and thus can serve as potential drug candidates. MD simulation studies predicted the stability of complexes and the complex of Kaempferol was most stable based on RSMD value and MM/GBSA binding energy. The biochemical assays and computational studies indicated that Thymus serpyllum could be used as a promising feed additive in dairy cows to manage oxidative stress during the transition period. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.