Abstract

Synthesis of Polyimides (PIs) between pyromellitic dianhydride (PMDAH) and oxydianiline (ODA) or p-phenylenediamine (PPDA) in the presence and absence of V2O5 and Ag nanoparticles (NPs) were carried out under N2 atmosphere at 160 °C for 5 h with vigorous stirring in N-methylpyrrolidone (NMP) solvent. The prepared PI and its nanocomposites were analyzed by FT-IR spectroscopy, 1H NMR spectroscopy, FE-SEM, SEM, DSC and TGA like analytical instruments. The FE-SEM showed various surface morphologies for different PI nanocomposites. The particle size of the prepared nanoparticles was calculated as less than 60 nm for Ag and 15 nm for V2O5 nanoparticles by HR-TEM. The PI nanocomposites embedded with Ag nanoparticles (P2 and P5) showed a higher thermal stability than the pristine PIs (P1 and P4) and PI/V2O5 nanocomposites (P3 and P6). Further, the possible application of metal (Ag) and metal oxide (V2O5) NPs embedded PI nanocomposites was assessed on the catalytic reduction of highly toxic Cr(VI), Rhodamine 6G (R6G) dye and p-nitrophenol (NiP) pollutants with the help of a reducing agent (NaBH4). The apparent rate constant (kapp) values were calculated to assess the catalytic efficiency of the prepared PI and its nanocomposites. The PI/Ag nanocomposite (P2) system showed an efficient catalytic reduction than the other systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.