Abstract

The study was focused on the evaluation of two copolymers as micellar carriers for kaempferol delivery. The copolymers comprised identical hydrophilic blocks of poly(2-(dimethylamino)ethyl methacrylate and different hydrophobic blocks of either poly(ε-caprolactone) (PDMAEMA9-b-PCL70-b-PDMAEMA9) or poly(propylene oxide) (PDMAEMA13-b-PPO69-b-PDMAEMA13). The calculation of Flory-Huggins parameters and determination of encapsulation efficiency showed that PDMAEMA-b-PCL-b-PDMAEMA copolymer possessed higher capacity for kaempferol loading. The diameter of the micelles before and after lyophilization was not changed, suggesting that the micelles could be lyophilized and redispersed before administration. The in vitro release of kaempferol from PDMAEMA-b-PPO-b-PDMAEMA micelles was faster than the release from PDMAEMA-b-PCL-b-PDMAEMA micelles, probably due to the higher affinity of kaempferol to this copolymer. Further, the higher affinity resulted in a retention of antioxidant activity of kaempferol in the presence of DPPH and KO2 radicals. Thus, PDMAEMA-PCL-PDMAEMA was considered more appropriate carrier because of the higher encapsulation efficiency and preservation of antioxidant activity of the drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.