Abstract
Abstract Laser physical vapour deposition (LPVD) has been used to deposit thin CoSi2 films on (100) silicon at different substrate temperatures ranging from room temperature to 600°C. Silicide films were deposited by ablating a solid target of CoSi2 in vacuum with a pulsed KrF excimer laser. Particulate-free silicide thin films were characterized by X-ray diffraction, Rutherford backscattering, and analytical and high-resolution transmission electron microscopy. We have found that films deposited at 200°C and below are amorphous; films deposited at 400°C are polycrystalline; and films deposited at 600°C are (001) textured. Resistivity of these films has been measured as a function of temperature. This plot for CoSi2 exemplifies a typical resistivity behaviour for metallic compounds. The room temperature resistivity has been found to be about 15μΩ cm with a residual resistivity of about 4 μΩ cm for these films. A theoretically based Bloch-Gruneisen model has been applied to analyse the nature of such a plo...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.