Abstract

Tissue adhesives and sealants are commonly used in surgery either as an adjunct to, or replacement for, sutures. Previously, we have shown that fibrinogen can be crosslinked rapidly to give a high-strength bond in the presence of a ruthenium(II) complex, a persulfate and irradiation with visible light, and that the crosslinked fibrinogen is nontoxic to cells in vitro. This approach addresses limitations to current fibrin sealants that typically have relatively slow curing times and low bond strengths. In the present study, we have evaluated the efficacy and safety of this new biological scaffold sealant in various animal models. When placed as solid implants into rats, the crosslinked fibrinogen persisted for at least 8 weeks but was fully resorbed by 18 weeks with minimal inflammatory responses. When used as a tissue adhesive for repair of skin incisions in rats or as an arterial haemostat in pig, the photo-crosslinked fibrinogen sealed tissue or arrested bleeding within 20 s of application. For the skin incisions, the fibrinogen sealant promoted rapid tissue vascularization and cellular infiltration with no adverse foreign body cell generation. New collagen deposition occurred and with time the matrix had remodelled to acquire large mature collagen fiber bundles which were accompanied by maximum regenerated tensile strength. This biomaterial system may find useful applications in surgical procedures where rapid curing and/or high strength tissue sealing is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.