Abstract
The aim of the study was to determine whether the application of bulk industrial chemicals (potassium permanganate and water-soluble phosphate fertilizer) to partly oxidized, polyminerallic mine wastes can inhibit sulfide oxidation, and metal and metalloid mobility. The acid producing waste rocks were metal (Pb, Zn, Cu) and metalloid (As, Sb) rich and consisted of major quartz, dickite, illite, and sulfide minerals (e.g., galena, chalcopyrite, tetrahedrite, sphalerite, pyrite, arsenopyrite), as well as minor to trace amounts of pre- and post-mining oxidation products (e.g., hydrated Fe, Cu, Pb, and alkali mineral salts). SEM-EDS observations of treated waste material showed that metal, metal–alkali, and alkali phosphate coatings developed on all sulfides. The abundance of phosphate phases was dependant on the fertilizer type and the availability of metal and alkali cations in solution. In turn, the release of cations was dependent on the amount of sulfide oxidation induced by KMnO 4 during the experiment and the dissolution of soluble sulfates. Mn, Ca, Fe, and Pb phosphates remained stable during H 2O 2 leaching, preventing acid generation and metal release. In contrast, the lack of complete phosphate coating on arsenopyrite allowed oxidation and leaching of As to proceed. The mobilized As did not form phosphate phases and consequently, As displayed the greatest release from the coated waste. Thus, the application of KMnO 4 and the water-soluble phosphate fertilizer Trifos (Ca(H 2PO 4) 2) to partly oxidized, polyminerallic mine wastes suppresses sulfide oxidation and is most effective in inhibiting Cu, Pb, and Zn (Sb) release. However, the technique appears ineffective in suppressing oxidation of arsenopyrite and preventing As leaching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.