Abstract

In the present study, characteristics of the phasic flow pattern in the great cardiac vein and the mechanism of such pattern formation were investigated using a laser Doppler velocimeter with an optic fiber probe. The laser Doppler velocimeter allowed measurements of venous blood velocity under more physiological conditions than were possible with previous methods. Moreover, venous blood flow measurement in the great cardiac vein mirrors the effects of myocardial contraction on the venous flow more directly than does measurement in the coronary sinus. Thus, our method is considered very useful. Results obtained from the present study are as follows: 1) Measurement of the phasic flow in the great cardiac vein was made in 11 anesthetized dogs using our laser Doppler method. The blood velocity curve obtained in the great cardiac vein was always characterized by a prominent systolic flow wave (SFW). The mean value for the maximum velocities under control conditions in 11 cases was 40 +/- 13 cm/s. The blood velocity increased with the onset of left ventricular ejection and decreased gradually after the peak formation at mid- or late systole.--2) Besides the above SFW, one or two small wave components were frequently observed during the atrial contraction period and/or during the isovolumic contraction phase. On the waveform during the atrial contraction period, two cases showed forward flow, while one case showed reverse flow. The small reverse flow waves during the isovolumic contraction phase were found in seven cases.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call