Abstract
The Air Force Research Laboratory is developing a Self-Referencing Interferometer (SRI) wavefront sensor (WFS) for applications requiring laser propagation in strong scintillation. This paper compares several phase-shifting techniques that can be used to capture interference patterns and examines their effects on SRI WFS performance. These techniques include temporal, spatial, and spatial-temporal phase shifting. Temporal phase shifting allows for straightforward setup, alignment, and calibration, though its performance is degraded by changes in the atmosphere between measurements. Spatial phase shifting effectively freezes the atmosphere, but requires more rigorous camera calibration and alignment. Spatial-temporal phase shifting balances the benefits and challenges of both methods. This paper includes a discussion of the tradeoffs involved in selecting an appropriate phase-shifting approach for a given application. Laboratory results demonstrate the advantages and disadvantages of each technique in evaluation of SRI WFS performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.