Abstract

ABSTRACTRational design of liquid crystals (LCs) with excellent phase state and rotational viscosity has been a crucial technique for response speed improvement of LC wavefront corrector. A complete process for theoretically evaluating the phase state and rotational viscosity of fast response LCs using a fully atomistic molecular dynamics is reported. Predicted trends in molecular order, phase-transition temperature between metastable states and rotational viscosity show excellent agreement with experimental results. We also demonstrate that overestimation of the attraction both between and within molecules in the general Amber force field mainly leads to a systematic shift in the phase-transition temperature, rotational viscosity and figure-of-merit for fast response LCs. With further optimisations of intermolecular potential, simulation procedure and data processing, this fully atomistic simulation will be a useful evaluation method of response performance of LC materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.