Abstract
Pesticide contamination of aquatic ecosystems poses a significant threat to humans and can adversely affect fungal-driven processes in these understudied habitats. Here, we investigated the effects of four pesticides on detritus-inhabiting and plant root-associated fungi from streams, peatlands, and saltwater marshes. Additionally, we assessed the isolates’ capacities to degrade three carbon sources to understand the impact of pesticides on fungal-driven processes. Pesticide assays were conducted in 96-well glass-coated plates, with fungal growth measured using a UV-Vis spectrophotometer set to 595 nm. Assays included technical replication (n = 6), replication over time (n = 2), negative controls, and carry-over controls. In total, we assayed more than 153 isolates, representing up to 97 fungal genera. Results showed that 1.9%, 49.7%, 3.1%, and 5.6% of the isolates exhibited consistently lower growth when exposed to atrazine, mancozeb, cypermethrin, and malathion, respectively. Furthermore, 101 isolates, comprising 87 genera, were tested for cellulase, starch degradation, and tannase activity, with 41.6%, 28.7%, and 30.7% of the isolates testing positive, respectively. These findings suggest that while many species demonstrate functional redundancy, some fungal species are sensitive to current environmental pesticide levels, which affects their growth and may have broader implications on ecosystem health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.