Abstract

BackgroundOutdoor and early evening mosquito biting needs to be addressed if malaria elimination is to be achieved. While indoor-targeted interventions, such as insecticide-treated nets and indoor residual spraying, remain essential, complementary approaches that tackle persisting outdoor transmission are urgently required to maximize the impact. Major malaria vectors principally bite human hosts around the feet and ankles. Consequently, this study investigated whether sandals treated with efficacious spatial repellents can protect against outdoor biting mosquitoes.MethodologySandals affixed with hessian bands measuring 48 cm2 treated with 0.06 g, 0.10 g and 0.15 g of transfluthrin were tested in large cage semi-field and full field experiments. Sandals affixed with hessian bands measuring 240 cm2 and treated with 0.10 g and 0.15 g of transfluthrin were also tested semi field experiments. Human landing catches (HLC) were used to assess reduction in biting exposure by comparing proportions of mosquitoes landing on volunteers wearing treated and untreated sandals. Sandals were tested against insectary reared Anopheles arabiensis mosquitoes in semi-field experiments and against wild mosquito species in rural Tanzania.ResultsIn semi-field tests, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g, 0.10 g and 0.06 g transfluthrin reduced mosquito landings by 45.9%, (95% confidence interval (C.I.) 28–59%), 61.1% (48–71%), and 25.9% (9–40%), respectively compared to untreated sandals. Sandals fitted with hessian bands measuring 240 cm2 and treated with 0.15 g and 0.10 g transfluthrin reduced mosquito landings by 59% (43–71%) and 64% (48–74%), respectively. In field experiments, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g transfluthrin reduced mosquito landings by 70% (60–76%) against Anopheles gambiae sensu lato, and 66.0% (59–71%) against all mosquito species combined.ConclusionTransfluthrin-treated sandals conferred significant protection against mosquito bites in semi-field and field settings. Further evaluation is recommended for this tool as a potential complementary intervention against malaria. This intervention could be particularly useful for protecting against outdoor exposure to mosquito bites. Additional studies are necessary to optimize treatment techniques and substrates, establish safety profiles and determine epidemiological impact in different settings.

Highlights

  • Outdoor and early evening mosquito biting needs to be addressed if malaria elimination is to be achieved

  • Sandals fitted with hessian bands measuring 240 cm2 and treated with 0.15 g and 0.10 g transfluthrin reduced mosquito landings by 59% (43–71%) and 64% (48–74%), respectively

  • Sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g transfluthrin reduced mosquito landings by 70% (60–76%) against Anopheles gambiae sensu lato, and 66.0% (59–71%) against all mosquito species combined

Read more

Summary

Introduction

Outdoor and early evening mosquito biting needs to be addressed if malaria elimination is to be achieved. Deliberate scale up of LLINs and IRS has led to the emergence of behaviourally resilient malaria vectors [4] that evade these tools by increasingly feeding and resting outdoors [5,6,7,8] These changes, associated with the suppression of the once predominant local vector [4,5,6,7,8,9] attenuate the impact of LLINs and IRS [4]. Killing adult mosquitoes when they feed upon sugar using attractive toxic sugar baits (ATSB) [15,16,17,18,19,20,21], when they feed on livestock that have been sprayed with or ingested endectocides [22, 23], use of odour-baited mosquito landing boxes outdoors [24,25,26], use of topical repellents in the early evenings [27, 28] and larval source management [29, 30]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call