Abstract
The long-pulse high-confinement (H-mode) plasma regime is considered to be a preferable scenario in future fusion devices, and in the period of normal operation during H-mode, edge-localised modes (ELMs) are one of the most serious threats to the performance and capability of divertor targets. The EAST recently achieved a variety of H-mode regimes with ELMs. For the purpose of studying the performance of the EAST upgraded divertor during type I ELMs, a series of simulations were performed by using three-dimensional (3D) finite element code. To make a visible outcome of the direct ELM impact on the divertor targets, a preliminary evaluation system with three indices to exhibit the influence has been developed. The indices that comprise temperature evolution, thermal penetration depth and crack initiation life, which could reveal the process of micro-crack formation, are calculated in both low and high-power scenarios for type I ELMs. The initial results indicate that the transient heat load has a significant influence in a very short thickness layer along the direction perpendicular to the plasma-facing surface throughout its duration. The conclusion could offer a pertinent guide to the next-step high-power long-pulse operation in EAST and would also be helpful for scientifically studying the damage and fatigue mechanism of the divertor in ITER and future fusion power reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.