Abstract

Thermoelectric (TE) technology is promising for reducing thermal discomfort of workers during their routine professional activities. In this manuscript, a preliminary evaluation of a newly developed personal cooling system (PCS) with flexible TE modules is presented based on an analysis of cooling efficiency and power consumption. For this purpose, tests with human participation were performed involving the monitoring of local skin temperature changes and electrical parameters of the controller. Thanks to TE cooling, a significant reduction of local skin temperature was observed at the beginning of the experiment, reaching as much as 6 °C. However, the observed effect systematically became weaker with time, with the temperature difference decreasing to about 3 °C. Cooling efficiency stayed at the same level over the ambient temperature range from 25 °C to 35 °C. The obtained results showed that a proper fitting of the PCS to the human body is a crucial factor influencing the PCS cooling efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.