Abstract

Nitrogen contamination of groundwater has become an increasingly serious issue affecting the quality of drinking water. An energy efficient and low cost drinking water treatment method involving two attached growth bioreactors were developed for both NH4-N removal and NO3-N removal. Continuous flow of the groundwater through the NH4-N bioreactor resulted in the removal of NH4-N by nitrification without any aeration. The efficiency of NH4-N removal was determined to be 70% in the laboratory and 95% in on-site trials. The higher efficiency of the on-site bioreactor resulted from the presence of various groups of local microorganisms (8 groups and 3 classes) which were cultivated from the on-site groundwater. The NO3-N bioreactor was capable of removing NO3-N from the groundwater efficiently by hydrogenotrophic denitrification at low H2 supply rates. A high NO3-N removal efficiency of 98% was found in the bioreactors that used both local microorganisms and other microorganisms that were cultivated from a drinking water system. Although the microbial community present in both NO3-N bioreactors were different, the dominant bacterial taxonomic groups were found to be similar, i.e., Betaproteobacteria and Gammaproteobacteria. The NH4-N and NO3-N bioreactors are alternative methods with high efficiency and various microbial groups for nitrogencontaminated groundwater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.