Abstract

A reliable indicator is needed to predict and reduce the risk of infection associated with fecal contamination of surface water. Since Pepper mild mottle virus (PMMoV), human picobirnaviruses (hPBV) and Torque teno virus (TTV) have been detected at substantial levels in human feces, we explored whether detection of nucleic acids of these viruses is a suitable indicator of fecal contamination in river water. From September 2008 to December 2009, water samples (n = 111) were collected from the Ruhr and Rhine rivers and from the influents and effluents of a wastewater plant (n = 12). Quantitative real time (RT-) PCR was used to determine the abundance of PMMoV, hPBV, and TTV in comparison to human adenoviruses (HAdV) and human polyomaviruses (HPyV) that are frequently detected in surface water and were previously proposed as indicators. While PMMoV was detected in all river water samples, the other viruses were detected less frequently. The concentration of the studied viruses in positive river water ranged from 5 × 101 to 1.07 × 106 genome equivalents per liter (gen.equ./l). All wastewater samples were positive for PMMoV, HAdV and HPyV, while TTV and hPBV were detected in 6/12 and 3/12 of samples, respectively. To determine if PMMoV is specific to human-derived fecal waste, fecal samples from human (n = 20) and animal (n = 53) were also tested. In contrast to the ubiquity of PMMoV in human feces (19/20) the virus was only detected at low concentration in a minority of the animal fecal samples tested (7/15 from chicken, 1/10 from Geese and 1/6 from cows). Therefore, in this setting TTV and hPBV do not seem to be suitable indicators of fecal contamination in water. Whereas, the high excretion level and dissemination of PMMoV in human sewage and river water suggest that PMMoV could be a promising indicator of fecal pollution in surface water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.