Abstract
This work aims at promoting target localization accuracy in cranial stereotactic radiosurgery (SRS) applications by focusing on the correction of sequence-dependent (also patient induced) magnetic resonance (MR) distortions at the lesion locations. A phantom-based quality assurance (QA) methodology was developed and implemented for the evaluation of three distortion correction techniques. The same approach was also adapted to cranial MR images used for SRS treatment planning purposes in single or multiple brain metastases cases. A three-dimensional (3D)-printed head phantom was filled with a 3D polymer gel dosimeter. Following treatment planning and dose delivery, volumes of radiation-induced polymerization served as hypothetical lesions, offering adequate MR contrast with respect to the surrounding unirradiated areas. T1-weighted (T1w) MR imaging was performed at 1.5T using the clinical scanning protocol for SRS. Additional images were acquired to implement three distortion correction methods; the field mapping (FM), mean image (MI) and signal integration (SI) techniques. Reference lesion locations were calculated as the averaged centroid positions of each target identified in the forward and reverse read gradient polarity MRI scans. The same techniques and workflows were implemented for the correction of contrast-enhanced T1w MR images of 10 patients with a total of 27 brain metastases. All methods employed in the phantom study diminished spatial distortion. Median and maximum distortion magnitude decreased from 0.7mm (2.10ppm) and 0.8mm (2.36ppm), respectively, to <0.2mm (0.61ppm) at all target locations, using any of the three techniques. Image quality of the corrected images was acceptable, while contrast-to-noise ratio slightly increased. Results of the patient study were in accordance with the findings of the phantom study. Residual distortion in corrected patient images was found to be <0.3mm in the vast majority of targets. Overall, the MI approach appears to be the most efficient correction method from the three investigated. In cranial SRS applications, patient-specific distortion correction at the target location(s) is feasible and effective, despite the expense of longer imaging time since additional MRI scan(s) need to be performed. A phantom-based QA methodology was developed and presented to reassure efficient implementation of correction techniques for sequence-dependent spatial distortion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.