Abstract

BackgroundDiffusion kurtosis imaging (DKI) has the potential to provide microstructural insights into myelin and axonal pathology with additional kurtosis parameters. To our knowledge, few studies are available in the current literature using DKI by tract-based spatial statistics (TBSS) analysis in patients with multiple sclerosis (MS). The aim of this study is to assess the performance of commonly used parameters derived from DKI and diffusion tensor imaging (DTI) in detecting microstructural changes and associated pathology in relapsing remitting MS (RRMS).MethodsThirty-six patients with RRMS and 49 age and sex matched healthy controls underwent DKI. The brain tissue integrity was assessed by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr), mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr) of DKI and FA, MD, Da and Dr of DTI. Group differences in these parameters were compared using TBSS (P < 0.01, corrected). To compare the sensitivity of these parameters in detecting white matter (WM) damage, the percentage of the abnormal voxels based on TBSS analysis, relative to the whole skeleton voxels for each parameter was calculated.ResultsThe sensitivities in detecting WM abnormality in RRMS were MK (78.2%) > Kr (76.7%) > Ka (53.5%) and Dr (78.8%) > MD (76.7%) > FA (74.1%) > Da (28.3%) for DKI, and Dr (79.8%) > MD (79.5%) > FA (68.6%) > Da (40.1%) for DTI. DKI-derived diffusion parameters (FA, MD, and Dr) were sensitive for detecting abnormality in WM regions with coherent fiber arrangement; however, the kurtosis parameters (MK and Kr) were sensitive to discern abnormalities in WM regions with complex fiber arrangement.ConclusionsThe diffusion and kurtosis parameters could provide complementary information for revealing brain microstructural damage in RRMS. Dr and DKI_Kr may be regarded as useful surrogate markers for reflecting pathological changes in RRMS.

Highlights

  • Diffusion kurtosis imaging (DKI) has the potential to provide microstructural insights into myelin and axonal pathology with additional kurtosis parameters

  • Our aim is to assess the performances of 11 commonly used parameters derived from DKI (MK, Axial kurtosis (Ka), Kr, fractional anisotropy (FA), mean diffusivity (MD), Axial diffusivity (Da) and Radial diffusivity (Dr)) and diffusion tensor imaging (DTI) (FA, MD, Da and Dr) in detecting microstructural abnormalities in relapsing remitting MS (RRMS)

  • Kurtosis parameters from DKI Compared with healthy controls, RRMS patients had significantly decreased DKI-derived kurtosis parameters in white matter (WM) regions (P < 0.01, two-tailed, FWE corrected) with complex fiber arrangement, such as in the juxtacortical WM and corona radiata

Read more

Summary

Introduction

Diffusion kurtosis imaging (DKI) has the potential to provide microstructural insights into myelin and axonal pathology with additional kurtosis parameters. The aim of this study is to assess the performance of commonly used parameters derived from DKI and diffusion tensor imaging (DTI) in detecting microstructural changes and associated pathology in relapsing remitting MS (RRMS). As a clinically feasible extension of DTI, diffusion kurtosis imaging (DKI) has been proposed to characterize the deviation of water diffusion in neural tissues from Gaussian diffusion [5, 6]. Both diffusion parameters including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr) and kurtosis parameters including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr) could be obtained from DKI data. DKI can be regarded as a more sensitive indicator of diffusional heterogeneity and can be used to investigate abnormalities in tissues with isotropic structure [6, 7]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.