Abstract

In this paper, passive cooling strategies have been investigated to evaluate their effectiveness in reducing cooling thermal loads and air conditioning energy consumption for residential buildings in Kingdom of Saudi Arabia (KSA). Specifically, three passive cooling techniques have been evaluated including natural ventilation, downdraft evaporative cooling, and earth tube cooling. These passive cooling systems are applied to a prototypical KSA residential villa model with an improved building envelope. The analysis has been carried using detailed simulation tool for several cities representing different climate conditions throughout KSA. The impact of the passive cooling systems is evaluated on both energy consumption and electrical peak demand for residential villas with and without improved building envelope for five cities, representatives of various climate conditions in KSA. It is found that both natural ventilation and evaporative cooling provide a significant reduction in cooling energy use and electrical peak demand for the prototypical villa located in dry KSA climates such as that of Riyadh and Tabuk. Natural ventilation alone has reduced the cooling energy end-use by 22%, while the evaporative cooling system has resulted in 64% savings in cooling energy end-use. Moreover, the natural ventilation is found to have a high potential in all KSA climates, while evaporative cooling can be suitable only in hot and dry climates such as Riyadh and Tabuk. Finally, the analysis showed that natural ventilation provided the lowest electrical peak demand when applied into the improved envelope residential buildings in all five cities in KSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call