Abstract

This study aimed to determine the ventilation conditions required for suitable indoor air quality management during cooking in a typical South Korean residential home. We measured the concentrations of particulate matter (PM10) and fine particulate matter (PM2.5) under different ventilation conditions during the cooking of different food materials in the kitchen of a multi-family house, which is the representative residential space in South Korea. Pork belly and mackerel, which are the staple meat and fish products of Korean people, were prepared (200g of each) and cooked via roasting. The PM10 and PM2.5 concentrations were measured three times for 1h at 1min intervals under twelve ventilation conditions. To investigate the PM10 and PM2.5 concentration distribution characteristics and the reduction effect according to ventilation condition, the ratio of the concentration during cooking to the initial concentration was calculated for each condition. Factors causing the emission of PM10 and PM2.5 for each food material and under each ventilation condition were analyzed using principal component analysis and verified using one-way analysis of variance and post hoc analysis. The PM10 and PM2.5 concentrations generated during the cooking of pork belly and mackerel reached their maximum values when no ventilation was used. Under this condition, PM10 concentrations were 246.27 and 1227.71μg/m3 while the PM2.5 concentrations were 161.93 and 760.82μg/m3 for pork belly and mackerel cooking, respectively. The PM10 and PM2.5 concentrations were also found to be high when a range hood and air cleaner were used, indicating that it is necessary to improve the performance of ventilation devices and to use appropriate ventilation methods. The use of natural ventilation exhibited a high PM10 and PM2.5 reduction effect compared with the ventilation conditions that used ventilation devices. Using natural ventilation together with ventilation devices was found to be the most effective method of reducing the PM10 and PM2.5 generated during cooking. In conclusion, PM10 and PM2.5 concentrations generated during the cooking of pork belly and mackerel varied depending on the ventilation condition, but they were high when inappropriate ventilation methods were used. Therefore, using appropriate ventilation conditions is effective in reducing PM10 and PM2.5 generated during cooking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.